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Abstract. In complex systems such as turbulent flows and financial markets, the dynamics in long and
short time-lags, signaled by Gaussian and fat-tailed statistics, respectively, calls for a unified description.
To address this issue we analyze a real dataset, namely, price fluctuations, in a wide range of temporal
scales to embrace both regimes. By means of Kramers-Moyal (KM) coefficients evaluated from empirical
time series, we obtain the evolution equation for the probability density function (PDF) of price returns.
We also present consistent asymptotic solutions for the timescale dependent equation that emerges from
the empirical analysis. From these solutions, new relationships connecting PDF characteristics, such as
tail exponents, to parameters of KM coefficients arise. The results reveal a dynamical path that leads
from Gaussian to fat-tailed statistics, furnishing insights on other complex systems where akin crossover
is observed.

PACS. 05.10.Gg Stochastic analysis methods (Fokker-Planck, Langevin, etc.) – 05.40.-a Fluctuation phe-
nomena, random processes, noise, and Brownian motion – 89.65.Gh Economics; econophysics, financial
markets, business and management

One of the main problems in statistical physics con-
sists in the study of macroscopic changes of systems in
which fluctuations play a central role, e.g., diffusion and
noise-induced transitions. The Fokker-Planck equation
(FPE) [1] provides a powerful tool for dealing with such
problems and has been used in many different fields in
natural sciences, including solid-state and plasma physics,
quantum optics, chemical and nuclear reaction kinetics,
molecular biology and population dynamics. Financial
data have also been described as stochastic processes gov-
erned by Langevin or FPEs. These efforts are of utter rele-
vance due to the strongly complex fluctuating dynamics of
financial time series, which poses new challenges to model
the dynamical laws responsible for the observed statistical
properties. In that direction, for example, the anomalous
diffusive properties and second-order correlations of price
fluctuations (e.g., see [2]), have been addressed through
multivariate [3] and non-linear [4] models. However, these
attempts are usually built phenomenologically and, as far
as they are manifold, entail drawbacks for unmasking the
processes that rule the underlying dynamics.

A typical feature of complex systems is the existence
of non-trivial structures on different timescales. In partic-
ular, the dynamics of price fluctuations in long and short
timescales, signaled by Gaussian and fat-tailed probability
density functions (PDFs), respectively, has been usually
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treated in the literature separately, and a unified descrip-
tion in the full range of timescales is still lacking.

Our present goal is two-fold. The first one is to
grasp, through a non-parametric method, the underlying
stochastic dynamics of price fluctuations in order to unveil
the driving mechanisms within a unified framework. The
second one is to determine analytically, from the stochas-
tic equations that emerge from the first step, the family
of PDFs that encompasses the observed timescale depen-
dent ones. To these ends, we obtain the evolution equa-
tion for the PDF of price returns through the estimation
of Kramers-Moyal (KM) expansion coefficients. We fol-
low the work by Friedrich and collaborators [5,6], which
exploits a correspondence between financial market dy-
namics and hydrodynamic turbulence [7] assuming the
existence of a flux of information towards finer scales.
This approach has been applied before for developed mar-
kets, although for limited time windows [5,8–10]. Here, as
a relevant example, we scrutinize the daily and intraday
time series of Ibovespa, the financial index of the Brazilian
stock market, which is not fully understood, despite typi-
fying major emergent markets. We address a large hierar-
chy of time-lags, ranging from months to minutes. From
the measured KM coefficients, we are able to reproduce
the full evolution of empirical histograms of price returns,
embracing the crossover from Gaussian to strongly fat-
tailed PDFs when going from large to short timescales.
We also present consistent solutions of the resulting FPE.
They belong to the class of generalized Student-t distribu-
tions (also known in recent literature as q-Gaussians [11])
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Fig. 1. Coefficients D̃(1) (a) and D̃(2) (b) as a function of ∆x, evaluated at ∆t2 = 109 min and ∆t1 = 125 min (hence τ = 7.9
and ∆τ = 0.2). The abscissa axes are rescaled by the standard deviation σ32 of the returns at 32-day time-lag. Solid lines
correspond to the intervals used for fits.

that comprises the non-stationary invariant PDFs ob-
served in both asymptotic limits.

We investigate the timescale evolution of the PDF of
logarithmic price increments (returns) ∆x. We consider,
as a general evolution equation for those PDFs, the KM
expansion of a master equation, valid for Markov pro-
cesses [1]:

∂P (∆x, τ)
∂τ

=
∑

k≥1

[
− ∂

∂∆x

]k

D(k)(∆x, τ)P (∆x, τ), (1)

where the coefficients D(k)(∆x, τ) are defined as

D(k)(∆x, τ) = lim
∆τ→0

D̃(k)(∆x, τ, ∆τ), (2)

with D̃(k) = M (k)(∆x, τ, ∆τ)/∆τ/k!, being M (k) the mo-
ments of the conditional PDFs, i.e., M (k) =

∫
d∆x′(∆x′−

∆x)kP (∆x′, τ +∆τ |∆x, τ). Following the insight provided
by cascade models in turbulence, we consider a logarith-
mic time scale defined as τ = log2(∆t0/∆t), where ∆t0 is
a reference time-lag.

For the analysis of Ibovespa, we select three datasets:
3960 deflated daily closing prices, in the term 02 Jan.
1991–28 Dec. 2006, 37 984 15-minute cotes in 21 Jan.
1998–31 Mar. 2003 and 794 310 30-second cotes in 01 Nov.
2002–19 Jul. 2006. The timescale ∆t0 (τ = 0) is set as 32
(trading) days. In what follows, the measured returns are
given in units of the standard deviation σ32 of the respec-
tive data sample at 32-day time-lag.

Markovianity was investigated by evaluating the
Chapman-Kolmogorov equation [1]. We found that it
holds, thus validating our approach. The KM coeffi-
cients D(k)(∆x, τ) were estimated directly from data se-
ries by means of their statistical definition, given by
equation (2). Conditional PDFs P (∆x2, τ2|∆x1, τ1) =
P (∆x2, τ2; ∆x1, τ1)/P (∆x1, τ1), with τ2 > τ1, were ob-
tained from the data sets by building the histograms for
the joint PDFs P (∆x2, τ2; ∆x1, τ1), computed over pairs
of returns ∆xi, incident at the same initial time. The first

coefficients D̃(k) were computed for τ = (τ1 + τ2)/2 and
∆τ = τ2 − τ1. For each couple of values (τ, ∆τ), we found
that D̃(1) and D̃(2), as a function of ∆x, follow, in very
good approximation, linear and quadratic laws, respec-
tively, as illustrated in Figure 1. Namely,

D̃(1) = −ã1∆x + ã0,

D̃(2) = b̃2[∆x]2 + b̃1∆x + b̃0. (3)

Similar behaviors for D̃(1) and D̃(2) have been observed for
linear and logarithmic increments of indexes and exchange
rates involving US, Germany and Japan markets [5,8,10].
By fitting the linear and quadratic ansatz to the data,
we obtained the parameters {ãi, b̃j} for each (τ, ∆τ). For
fixed τ , the limit ∆τ → 0 in equation (2) was achieved by
extrapolation of the parameters {ãi, b̃j} as a function of
∆τ . For the fourth order KM coefficients D̃(4), as a func-
tion of ∆x, fourth order polynomial fits were performed,
the limit ∆τ → 0 being consistent with vanishingly small
D(4)(∆x, τ). Therefore, according to Pawula theorem [1]
the KM expansion (1) can be truncated after the second
order, thus reducing to the form of a FPE. The limit-
ing values {ai, bj} determine the ∆x-dependence of drift,
D(1), and diffusion, D(2), coefficients. The τ -dependence
of the limiting parameters is presented in Figures 2 and 3.

Parameters a0 and b1 describe the deviation of the
PDFs from symmetry around zero. Indeed, this feature is
observed for larger scales, where both parameters present
non-null values, although with large fluctuations. In con-
trast, for intraday scales, a0 and b1 are negligible. Drift
parameter a1 remains approximately constant along daily
and intraday time-scales. Diffusion parameter b2 increases
with τ from near zero up to a limiting value, signaling
a crossover in the underlying dynamics at the monthly
scale. Meanwhile, diffusion parameter b0 presents a sus-
tained exponential decay as τ increases. Similar behavior
of b0 was also reported for exchange rates [5], although for
a shorter range of timescales. Despite the exponential-like
decay of b0, it can not be neglected at large τ : representing
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Fig. 2. Dependence of drift coefficient parameters a1 and a0

on timescale τ . Analysis was performed with daily (circles),
15 min (squares) and 30 s (triangles) data series.

the additive noise component, it provides stability to the
stochastic process for small ∆x. In fact, the variance σ2

τ

also follows an exponential-like decay 2−γτ , as shown in
Figure 3c, thus setting the reference level for b0. Two lim-
iting regimes associated with slightly different slopes are
observed for both quantities (see Fig. 3c), suggesting that
b0(τ) is related to σ2

τ . In the limit of small τ both quanti-
ties are characterized by γ = 1, corresponding to normal
diffusion, while in the limit of large τ , γ >1, showing the
onset of superdiffusion in the high-frequency regime. For
τ > 11, data restrictions for obtaining small ∆τ results
prevent the estimation of the parameters.

The resulting FPE explicitly reads:

∂τP = ∂∆x(a1P ) + ∂2
∆x

(
(b0 + b1∆x + b2(∆x)2)P

)
, (4)

where the τ -dependence of the parameters was smoothed
according to the ansatz plotted in Figures 2 and 3. Equa-
tion (4) was numerically integrated by means of a FTCS
scheme [12]. A Gaussian fit to the empirical histogram at
∆t = 128 days (τ = −2), was used as initial condition.
The evolution was carried out down to the scale of 30 sec-
onds, the highest time resolution of our data. For τ > 11,
further evolution of the FPE, was performed by extrapo-
lation of the τ -dependence of the coefficients. In Figure 4,
we show the PDFs of returns (rescaled by στ ) generated
by the FPE, together with the empirical ones. Their agree-
ment is remarkably good, in the full range of data, strongly
supporting our estimation of KM coefficients.

Within Langevin dynamics, D(1) and D(2) are related
to the deterministic and random forces, respectively [1].
Despite the wide range of analyzed time-lags, the intensity
of the harmonic restoring force, given by D(1)(∆x, τ) �
−a1(τ)∆x, remains almost constant for τ > −2. This
means that the relaxation mechanisms that are governed,
among other factors, by constraints, flux of information,
stock liquidity, and risk aversion, act similarly at diverse
temporal scales.
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Fig. 3. Dependence of diffusion coefficient parameters b2, b1

and b0 on timescale τ . Symbols as in Figure 2. In (c), for com-
parison, we include σ2(τ ) = σ2

τ/σ2
32 (small symbols) together

with its asymptotic behaviors (thin lines) for large and short
timescales as predicted by equation (7), with γ = 1 and 1.17,
respectively.

The evolution of the diffusion coefficient presents
more distinctive features. For most timescales,
D(2)(∆x, τ) � b0(τ) + b2(τ)[∆x]2 is dominated by
the state-independent and quadratic components, asso-
ciated to additive and multiplicative noises, respectively.
Due to the cumulative character of the fluctuations, the
additive component b0 increases with ∆t. Meanwhile, the
change of b2 to a higher plateau for small ∆t indicates
large multiplicative effects in that region, that fade away
in the opposite limit of large time-lags, as expected.
This means that the endogenous behavior of the market,
which spontaneously creates the amplification response
mechanism to price fluctuations, presents different typical
levels for micro and macro timescales.

The presence of multiplicative noise is known to be
an ubiquitous mechanism to generate fat-tailed PDFs as
steady-state solutions [13,14]. It was found out that for
a large set of control parameters, power-law tails prevail,
with exponent depending on the ratio a1/b2 while being
b0 independent. Furthermore, Langevin dynamics mapped
onto stochastic multiplicative processes with reinjection
gives rise to power-law PDFs P (∆x, τ) ∼ |x|−(µ+1) [15],
from which the expression µ = a1/[2b2] was derived [16].
From these previous results, the observed plateaux of a1

and b2 suggest a τ -invariant tail of the PDF. In fact, the
FPE (4) admits invariant solutions as discussed below.
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Fig. 4. PDFs of normalized returns. Comparison between the
numerical solution of FPE (4) (solid lines) and the empirical
data (symbols). Timescales correspond to τ = −2 to τ ≈ 15,
from bottom to top. Price returns are scaled by στ and PDFs
shifted, for better visualization. A Gaussian fitted to the data
for τ = −2 (∆t = 128 days) is the initial condition.

Assuming an exponential law for b0(τ), steady values
of a1 and b2, and neglecting b1, the solution of FPE (4) is

P (∆x, τ) ∼ 1/(b0(τ) + b2[∆x]2)(µ+1)/2 , with (5)
µ = 1 + (a1 − B/2)/b2 , (6)

where B ≡ −b′0/b0 does not depend on time. Notice that
equation (6) differs from the expression reported in [16].
The solution (5) is a q-Gaussian (with q = 1 + 2/(µ +
1)) [11]. In the particular case b2 → 0, the solutions be-
come of the Gaussian form.

The rescaled variance σ2(τ) ≡ σ2
τ/σ2

32 is

σ2(τ) = b0(τ)/(a1 − B/2 − b2). (7)

In the limit of large time-lags, the diffusion coefficient is
dominated by the state independent term b0 that obeys
b0(τ) = b0(0)2−τ . Substitution of the numerical values of
b0(0) and a1, into equation (7) yields, in very good approx-
imation, σ2(τ) = 2−τ (normal diffusion in the linear time
scale) in agreement with numerical results (see Fig. 3c).
As a consequence, in that limit, the evolution equation re-
covers Gaussianity, ruled by a balance between the deter-
ministic harmonic force and the time dependent additive
noise. In the opposite limit of large τ , b2 attains a non-
null steady value, while b0(τ) ∼ 2−γτ with γ > 1. Also

τ0 5 10 15
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Fig. 5. Dependence of exponent µ on timescale τ . Symbols cor-
respond to fitting of equation (5) to the empirical histograms,
the dotted line to the asymptotic value given by equation (6).

in this case, equation (7) predicts an asymptotic behavior
of σ2 in agreement with empirical values, as depicted in
Figure 3c.

As the evolution of the parameters other than b0 is
slow, especially for τ > 1, we also checked if the PDFs
could be effectively described by the ansatz (5) in an ex-
tended temporal regime. The outcomes of the fits match
well the respective empirical PDFs, for almost any τ . For
τ � 0, the significantly non-null value of b1, imposes a cor-
rection to the q-Gaussian form, yielding asymmetry. The
values of µ resulting from (least squares) q-Gaussian fits
and are displayed in Figure 5, together with the asymp-
totic value obtained from equation (6). For small τ , the
increasing value of the effective µ points the onset of the
Gaussian regime. For large τ , the empirical tail exponents
tend to a steady value in good accord with the theoretical
ones.

Power-law tails are often quoted in the literature for
financial assets in high-frequency regimes [4,17]. Ansatz
of the q-Gaussian form have been proposed before for
high-frequency [4,18] and for daily [9] logarithmic returns
from a phenomenological approach. Meanwhile, in our
case, they arise naturally from the evolution equation ob-
tained empirically from the evaluation of KM coefficients
throughout time-lags.

Let us recall that the results for τ > 11 (∆t > 4 min),
in Figure 4, were obtained by extrapolation of the τ -
dependence of the coefficients. However, a good foresight
of the empirical histograms arises from FPE evolution up
to τ = 14.75 (∆t = 1 min). On one hand, this ensures the
reliability of the estimated parameters; on the other, it
accounts for the predictability of intraday statistics, due
to the well known existence of memory effects in the high-
frequency regime of price returns. It is worth to mention
that the observed deviation of the empirical histogram for
the smallest analyzed time-lag (30 s) expresses the begin-
ning of a non-Markovian regime [19].

In sum, we have disclosed the evolutionary pattern of
the empirical PDFs of price returns, from Gaussian to
long-tailed regimes. Beyond the system under study, the
scope of our results may be appropriate for a larger finan-
cial scenario. Moreover our findings are not restricted to
the complexity of financial data, but may provide insights
for systems on general physical contexts, such as in tur-
bulent flows [20], where similar Gaussian to q-Gaussian
crossovers have been observed.
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